The stock span problem is a financial problem where we have a series of n daily price quotes for a stock and we need to calculate span of stock’s price for all n days.
The span Si of the stock’s price on a given day i is defined as the maximum number of consecutive days just before the given day, for which the price of the stock on the current day is less than or equal to its price on the given day.
For example, if an array of 7 days prices is given as {100, 80, 60, 70, 60, 75, 85}, then the span values for corresponding 7 days are {1, 1, 1, 2, 1, 4, 6}

A Simple but inefficient method
Traverse the input price array. For every element being visited, traverse elements on the left of it and increment the span value of it while elements on the left side are smaller.
Following is the implementation of this method:

## C++

`#include <bits/stdc++.h>`

`using` `namespace` `std;`

`void` `calculateSpan(``int` `price[], ``int` `n, ``int` `S[])`

`{`

`    ``S[0] = 1;`

`    ``for` `(``int` `i = 1; i < n; i++)`

`    ``{`

`        ``S[i] = 1; `

`        ``for` `(``int` `j = i - 1; (j >= 0) &&`

`                ``(price[i] >= price[j]); j--)`

`            ``S[i]++;`

`    ``}`

`}`

`void` `printArray(``int` `arr[], ``int` `n)`

`{`

`    ``for` `(``int` `i = 0; i < n; i++)`

`        ``cout << arr[i] << `` ``;`

`}`

`int` `main()`

`{`

`    ``int` `price[] = { 10, 4, 5, 90, 120, 80 };`

`    ``int` `n = ``sizeof``(price) / ``sizeof``(price[0]);`

`    ``int` `S[n];`

`    ``calculateSpan(price, n, S);`

`    ``printArray(S, n);`

`    ``return` `0;`

`}`

## C

`#include <stdio.h>`

`void` `calculateSpan(``int` `price[], ``int` `n, ``int` `S[])`

`{`

`    ``S[0] = 1;`

`    ``for` `(``int` `i = 1; i < n; i++) {`

`        ``S[i] = 1; `

`        ``for` `(``int` `j = i - 1; (j >= 0) && (price[i] >= price[j]); j--)`

`            ``S[i]++;`

`    ``}`

`}`

`void` `printArray(``int` `arr[], ``int` `n)`

`{`

`    ``for` `(``int` `i = 0; i < n; i++)`

`        ``printf``(``%d ``, arr[i]);`

`}`

`int` `main()`

`{`

`    ``int` `price[] = { 10, 4, 5, 90, 120, 80 };`

`    ``int` `n = ``sizeof``(price) / ``sizeof``(price[0]);`

`    ``int` `S[n];`

`    ``calculateSpan(price, n, S);`

`    ``printArray(S, n);`

`    ``return` `0;`

`}`

## Java

`import` `java.util.Arrays;`

`class` `GFG {`

`    ``static` `void` `calculateSpan(``int` `price[], ``int` `n, ``int` `S[])`

`    ``{`

`        ``S[``0``] = ``1``;`

`        ``for` `(``int` `i = ``1``; i < n; i++) {`

`            ``S[i] = ``1``; `

`            ``for` `(``int` `j = i - ``1``; (j >= ``0``) && (price[i] >= price[j]); j--)`

`                ``S[i]++;`

`        ``}`

`    ``}`

`    ``static` `void` `printArray(``int` `arr[])`

`    ``{`

`        ``System.out.print(Arrays.toString(arr));`

`    ``}`

`    ``public` `static` `void` `main(String[] args)`

`    ``{`

`        ``int` `price[] = { ``10``, ``4``, ``5``, ``90``, ``120``, ``80` `};`

`        ``int` `n = price.length;`

`        ``int` `S[] = ``new` `int``[n];`

`        ``calculateSpan(price, n, S);`

`        ``printArray(S);`

`    ``}`

`}`

## Python3

`def` `calculateSpan(price, n, S):`

`    ``S[``0``] ``=` `1`

`    ``for` `i ``in` `range``(``1``, n, ``1``):`

`        ``S[i] ``=` `1`

`        ``j ``=` `i ``-` `1`

`        ``while` `(j>``=` `0``) ``and` `(price[i] >``=` `price[j]) :`

`                       ``S[i] ``+``=` `1`

`                       ``j ``-``=` `1`

`def` `printArray(arr, n):`

`    ``for` `i ``in` `range``(n):`

`        ``print``(arr[i], end ``=` ` ``)`

`price ``=` `[``10``, ``4``, ``5``, ``90``, ``120``, ``80``]`

`n ``=` `len``(price)`

`S ``=` `[``None``] ``*` `n`

`calculateSpan(price, n, S)`

`printArray(S, n)`

## C#

`using` `System;`

`class` `GFG {`

`    ``static` `void` `calculateSpan(``int``[] price,`

`                              ``int` `n, ``int``[] S)`

`    ``{`

`        ``S[0] = 1;`

`        ``for` `(``int` `i = 1; i < n; i++) {`

`            ``S[i] = 1; `

`            ``for` `(``int` `j = i - 1; (j >= 0) && (price[i] >= price[j]); j--)`

`                ``S[i]++;`

`        ``}`

`    ``}`

`    ``static` `void` `printArray(``int``[] arr)`

`    ``{`

`        ``string` `result = ``string``.Join(`` ``, arr);`

`        ``Console.WriteLine(result);`

`    ``}`

`    ``public` `static` `void` `Main()`

`    ``{`

`        ``int``[] price = { 10, 4, 5, 90, 120, 80 };`

`        ``int` `n = price.Length;`

`        ``int``[] S = ``new` `int``[n];`

`        ``calculateSpan(price, n, S);`

`        ``printArray(S);`

`    ``}`

`}`

## PHP

`<?php`

`function` `calculateSpan(``\$price``, ``\$n``, ``\$S``)`

`{`

`    ``\$S``[0] = 1;`

`    ``for` `(``\$i` `= 1; ``\$i` `< ``\$n``; ``\$i``++)`

`    ``{`

`        ``\$S``[``\$i``] = 1;`

`        ``for` `(``\$j` `= ``\$i` `- 1; (``\$j` `>= 0) &&`

`            ``(``\$price``[``\$i``] >= ``\$price``[``\$j``]); ``\$j``--)`

`            ``\$S``[``\$i``]++;`

`    ``}`

`        ``for` `(``\$i` `= 0; ``\$i` `< ``\$n``; ``\$i``++)`

`        ``echo` `\$S``[``\$i``] . `` ``;;`

`}`

`    ``\$price` `= ``array``(10, 4, 5, 90, 120, 80);`

`    ``\$n` `= ``count``(``\$price``);`

`    ``\$S` `= ``array``(``\$n``);`

`    ``calculateSpan(``\$price``, ``\$n``, ``\$S``);`

`?>`

## Javascript

`<script>`

`    ``function` `calculateSpan(price, n, S)`

`    ``{`

`        ``S[0] = 1;`

`        ``for` `(let i = 1; i < n; i++) {`

`            ``S[i] = 1; `

`            ``for` `(let j = i - 1; (j >= 0) && (price[i] >= price[j]); j--)`

`                ``S[i]++;`

`        ``}`

`    ``}`

`    ``function` `printArray(arr)`

`    ``{`

`        ``let result = arr.join(`` ``);`

`        ``document.write(result);`

`    ``}`

`    ``let price = [ 10, 4, 5, 90, 120, 80 ];`

`    ``let n = price.length;`

`    ``let S = ``new` `Array(n);`

`    ``S.fill(0);`

`    ``calculateSpan(price, n, S);`

`    ``printArray(S);`

`</script>`

The Time Complexity of the above method is O(n^2). We can calculate stock span values in O(n) time.

A Linear-Time Complexity Method
We see that S[i] on the day i can be easily computed if we know the closest day preceding i, such that the price is greater than on that day than the price on the day i. If such a day exists, let’s call it h(i), otherwise, we define h(i) = -1.
The span is now computed as S[i] = i – h(i). See the following diagram.

To implement this logic, we use a stack as an abstract data type to store the days i, h(i), h(h(i)), and so on. When we go from day i-1 to i, we pop the days when the price of the stock was less than or equal to price[i] and then push the value of day i back into the stack.
Following is the implementation of this method.

## C++

`#include <iostream>`

`#include <stack>`

`using` `namespace` `std;`

`void` `calculateSpan(``int` `price[], ``int` `n, ``int` `S[])`

`{`

`    ``stack<``int``> st;`

`    ``st.push(0);`

`    ``S[0] = 1;`

`    ``for` `(``int` `i = 1; i < n; i++) {`

`        ``while` `(!st.empty() && price[st.top()] <= price[i])`

`            ``st.pop();`

`        ``S[i] = (st.empty()) ? (i + 1) : (i - st.top());`

`        ``st.push(i);`

`    ``}`

`}`

`void` `printArray(``int` `arr[], ``int` `n)`

`{`

`    ``for` `(``int` `i = 0; i < n; i++)`

`        ``cout << arr[i] << `` ``;`

`}`

`int` `main()`

`{`

`    ``int` `price[] = { 10, 4, 5, 90, 120, 80 };`

`    ``int` `n = ``sizeof``(price) / ``sizeof``(price[0]);`

`    ``int` `S[n];`

`    ``calculateSpan(price, n, S);`

`    ``printArray(S, n);`

`    ``return` `0;`

`}`

## Java

`import` `java.util.Stack;`

`import` `java.util.Arrays;`

`public` `class` `GFG {`

`    ``static` `void` `calculateSpan(``int` `price[], ``int` `n, ``int` `S[])`

`    ``{`

`        ``Stack<Integer> st = ``new` `Stack<>();`

`        ``st.push(``0``);`

`        ``S[``0``] = ``1``;`

`        ``for` `(``int` `i = ``1``; i < n; i++) {`

`            ``while` `(!st.empty() && price[st.peek()] <= price[i])`

`                ``st.pop();`

`            ``S[i] = (st.empty()) ? (i + ``1``) : (i - st.peek());`

`            ``st.push(i);`

`        ``}`

`    ``}`

`    ``static` `void` `printArray(``int` `arr[])`

`    ``{`

`        ``System.out.print(Arrays.toString(arr));`

`    ``}`

`    ``public` `static` `void` `main(String[] args)`

`    ``{`

`        ``int` `price[] = { ``10``, ``4``, ``5``, ``90``, ``120``, ``80` `};`

`        ``int` `n = price.length;`

`        ``int` `S[] = ``new` `int``[n];`

`        ``calculateSpan(price, n, S);`

`        ``printArray(S);`

`    ``}`

`}`

## Python3

`def` `calculateSpan(price, S):`

`    ``n ``=` `len``(price)`

`    ``st ``=` `[]`

`    ``st.append(``0``)`

`    ``S[``0``] ``=` `1`

`    ``for` `i ``in` `range``(``1``, n):`

`        ``while``( ``len``(st) > ``0` `and` `price[st[``-``1``]] <``=` `price[i]):`

`            ``st.pop()`

`        ``S[i] ``=` `i ``+` `1` `if` `len``(st) <``=` `0` `else` `(i ``-` `st[``-``1``])`

`        ``st.append(i)`

`def` `printArray(arr, n):`

`    ``for` `i ``in` `range``(``0``, n):`

`        ``print` `(arr[i], end ``=`` ``)`

`price ``=` `[``10``, ``4``, ``5``, ``90``, ``120``, ``80``]`

`S ``=` `[``0` `for` `i ``in` `range``(``len``(price)``+``1``)]`

`calculateSpan(price, S)`

`printArray(S, ``len``(price))`

## C#

`using` `System;`

`using` `System.Collections;`

`class` `GFG {`

`    ``static` `void` `calculateSpan(``int``[] price, ``int` `n, ``int``[] S)`

`    ``{`

`        ``Stack st = ``new` `Stack();`

`        ``st.Push(0);`

`        ``S[0] = 1;`

`        ``for` `(``int` `i = 1; i < n; i++) {`

`            ``while` `(st.Count > 0 && price[(``int``)st.Peek()] <= price[i])`

`                ``st.Pop();`

`            ``S[i] = (st.Count == 0) ? (i + 1) : (i - (``int``)st.Peek());`

`            ``st.Push(i);`

`        ``}`

`    ``}`

`    ``static` `void` `printArray(``int``[] arr)`

`    ``{`

`        ``for` `(``int` `i = 0; i < arr.Length; i++)`

`            ``Console.Write(arr[i] + `` ``);`

`    ``}`

`    ``public` `static` `void` `Main(String[] args)`

`    ``{`

`        ``int``[] price = { 10, 4, 5, 90, 120, 80 };`

`        ``int` `n = price.Length;`

`        ``int``[] S = ``new` `int``[n];`

`        ``calculateSpan(price, n, S);`

`        ``printArray(S);`

`    ``}`

`}`

Time Complexity: O(n). It seems more than O(n) at first look. If we take a closer look, we can observe that every element of the array is added and removed from the stack at most once. So there are total 2n operations at most. Assuming that a stack operation takes O(1) time, we can say that the time complexity is O(n).
Auxiliary Space: O(n) in worst case when all elements are sorted in decreasing order.

Another approach: (without using stack)

## C++

`#include <iostream>`

`#include <stack>`

`using` `namespace` `std;`

`void` `calculateSpan(``int` `A[], ``int` `n, ``int` `ans[])`

`{`

`    ``ans[0] = 1;`

`    ``for` `(``int` `i = 1; i < n; i++) {`

`        ``int` `counter = 1;`

`        ``while` `((i - counter) >= 0 && A[i] >= A[i - counter]) {`

`            ``counter += ans[i - counter];`

`        ``}`

`        ``ans[i] = counter;`

`    ``}`

`}`

`void` `printArray(``int` `arr[], ``int` `n)`

`{`

`    ``for` `(``int` `i = 0; i < n; i++)`

`        ``cout << arr[i] << `` ``;`

`}`

`int` `main()`

`{`

`    ``int` `price[] = { 10, 4, 5, 90, 120, 80 };`

`    ``int` `n = ``sizeof``(price) / ``sizeof``(price[0]);`

`    ``int` `S[n];`

`    ``calculateSpan(price, n, S);`

`    ``printArray(S, n);`

`    ``return` `0;`

`}`

## Java

`class` `GFG {`

`    ``static` `void` `calculateSpan(``int` `A[],`

`                              ``int` `n, ``int` `ans[])`

`    ``{`

`        ``ans[``0``] = ``1``;`

`        ``for` `(``int` `i = ``1``; i < n; i++) {`

`            ``int` `counter = ``1``;`

`            ``while` `((i - counter) >= ``0` `&& A[i] >= A[i - counter]) {`

`                ``counter += ans[i - counter];`

`            ``}`

`            ``ans[i] = counter;`

`        ``}`

`    ``}`

`    ``static` `void` `printArray(``int` `arr[], ``int` `n)`

`    ``{`

`        ``for` `(``int` `i = ``0``; i < n; i++)`

`            ``System.out.print(arr[i] + `` ``);`

`    ``}`

`    ``public` `static` `void` `main(String[] args)`

`    ``{`

`        ``int` `price[] = { ``10``, ``4``, ``5``, ``90``, ``120``, ``80` `};`

`        ``int` `n = price.length;`

`        ``int` `S[] = ``new` `int``[n];`

`        ``calculateSpan(price, n, S);`

`        ``printArray(S, n);`

`    ``}`

`}`

## Python3

`def` `calculateSpan(A, n, ans):`

`    ``ans[``0``] ``=` `1`

`    ``for` `i ``in` `range``(``1``, n):`

`        ``counter ``=` `1`

`        ``while` `((i ``-` `counter) >``=` `0` `and`

`              ``A[i] >``=` `A[i ``-` `counter]):`

`            ``counter ``+``=` `ans[i ``-` `counter]`

`        ``ans[i] ``=` `counter`

`def` `printArray(arr, n):`

`    ``for` `i ``in` `range``(n):`

`        ``print``(arr[i], end ``=` ` ``)`

`    ``print``()`

`price ``=` `[ ``10``, ``4``, ``5``, ``90``, ``120``, ``80` `]`

`n ``=` `len``(price)`

`S ``=` `[``0``] ``*` `(n)`

`calculateSpan(price, n, S)`

`printArray(S, n)`

## C#

`using` `System;`

`public` `class` `GFG {`

`    ``static` `void` `calculateSpan(``int``[] A,`

`                              ``int` `n, ``int``[] ans)`

`    ``{`

`        ``ans[0] = 1;`

`        ``for` `(``int` `i = 1; i < n; i++) {`

`            ``int` `counter = 1;`

`            ``while` `((i - counter) >= 0 && A[i] >= A[i - counter]) {`

`                ``counter += ans[i - counter];`

`            ``}`

`            ``ans[i] = counter;`

`        ``}`

`    ``}`

`    ``static` `void` `printArray(``int``[] arr, ``int` `n)`

`    ``{`

`        ``for` `(``int` `i = 0; i < n; i++)`

`            ``Console.Write(arr[i] + `` ``);`

`    ``}`

`    ``public` `static` `void` `Main(String[] args)`

`    ``{`

`        ``int``[] price = { 10, 4, 5, 90, 120, 80 };`

`        ``int` `n = price.Length;`

`        ``int``[] S = ``new` `int``[n];`

`        ``calculateSpan(price, n, S);`

`        ``printArray(S, n);`

`    ``}`

`}`

## Javascript

`<script>`

`       ``function` `calculateSpan(A, n, ans)`

`       ``{`

`           ``ans[0] = 1;`

`           ``for` `(let i = 1; i < n; i++) {`

`               ``let counter = 1;`

`               ``while` `((i - counter) >= 0 && A[i] >= A[i - counter]) {`

`                   ``counter += ans[i - counter];`

`               ``}`

`               ``ans[i] = counter;`

`           ``}`

`       ``}`

`       ``function` `printArray(arr, n) {`

`           ``for` `(let i = 0; i < n; i++)`

`               ``document.write(arr[i] + `` ``);`

`       ``}`

`       ``let price = [10, 4, 5, 90, 120, 80];`

`       ``let n = price.length;`

`       ``let S = ``new` `Array(n);`

`       ``calculateSpan(price, n, S);`

`       ``printArray(S, n);`

`   ``</script>`

A Stack Based approach :

1. In this approach, I have used the data structure stack to implement this task.
2. Here, two stacks are used. One stack stores the actual stock prices whereas, the other stack is a temporary stack.
3. The stock span problem is solved using only the Push and Pop functions of Stack.
4. Just to take input values, I have taken array ‘price’ and to store output, used array ‘span’.

Below is the implementation of the above approach:

## C

`#include <limits.h>`

`#include <stdio.h>`

`#include <stdlib.h>`

`#define SIZE 7`

`typedef` `int` `stackentry;`

`typedef` `struct` `stack {`

`    ``stackentry entry[SIZE];`

`    ``int` `top;`

`} STACK;`

`void` `initialiseStack(STACK* s) { s->top = -1; }`

`int` `IsStackfull(STACK s)`

`{`

`    ``if` `(s.top == SIZE - 1) {`

`        ``return` `(1);`

`    ``}`

`    ``return` `(0);`

`}`

`int` `IsStackempty(STACK s)`

`{`

`    ``if` `(s.top == -1) {`

`        ``return` `(1);`

`    ``}`

`    ``else` `{`

`        ``return` `(0);`

`    ``}`

`}`

`void` `push(stackentry d, STACK* s)`

`{`

`    ``if` `(!IsStackfull(*s)) {`

`        ``s->entry[(s->top) + 1] = d;`

`        ``s->top = s->top + 1;`

`    ``}`

`}`

`stackentry pop(STACK* s)`

`{`

`    ``stackentry ans;`

`    ``if` `(!IsStackempty(*s)) {`

`        ``ans = s->entry[s->top];`

`        ``s->top = s->top - 1;`

`    ``}`

`    ``else` `{`

`        ``if` `(``sizeof``(stackentry) == 1)`

`            ``ans = ``/0``;`

`        ``else`

`            ``ans = INT_MIN;`

`    ``}`

`    ``return` `(ans);`

`}`

`int` `main()`

`{`

`    ``int` `price[7] = { 100, 80, 60, 70, 60, 75, 85 };`

`    ``int` `span[7] = { 0 };`

`    ``int` `i;`

`    ``STACK s, temp;`

`    ``initialiseStack(&s);`

`    ``initialiseStack(&temp);`

`    ``int` `count = 1;`

`    ``span[0] = 1;`

`    ``push(price[0], &s);`

`    ``for` `(i = 1; i < 7; i++) {`

`        ``count = 1;`

`        ``while` `(!IsStackempty(s)`

`               ``&& s.entry[s.top] <= price[i]) {`

`            ``push(pop(&s), &temp);`

`            ``count++;`

`        ``}`

`        ``while` `(!IsStackempty(temp)) {`

`            ``push(pop(&temp), &s);`

`        ``}`

`        ``push(price[i], &s);`

`        ``span[i] = count;`

`    ``}`

`    ``for` `(i = 0; i < 7; i++)`

`        ``printf``(``%d ``, span[i]);`

`}`

which was the same expected output.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

## Say hello

#### Find us at the office

Overmann- Mucha street no. 55, 74667 Papeete, French Polynesia

#### Give us a ring

Juanfrancisco Develder
+76 987 423 417
Mon - Fri, 8:00-17:00